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How can we represent a world

e which is perceived with errors,

e on which we do actions that do not correspond exactly
to our orders,

e with maps that are uncertain?

Let use probabilistic (random) variables

1. Conditional Probability and Bayes Rule 6



Conditional Probability

Random variables often carry information about other random variables.
Suppose we already know that Y value is y, and we would like to know the
probability that X value is x conditioned on that fact:

plax, y)
r(v)

p(x | y) =

Where p(x,y) is the probability of having x and y.

1. Conditional Probability and Bayes Rule 7



Conditional Probability
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plx|y) = P, y)
I r(y)

1. Conditional Probability and Bayes Rule 8



Bayes Rule

The Bayes rule relates a conditional of the type p(x | y) to its “inverse” p(y | x):

r(y | z) - p(x)
p(y)

plz | y) =

Bayes rule plays a predominant role in probabilistic robotics (and probabilistic
inference in general).

1. Conditional Probability and Bayes Rule 9



Bayes Rule

p(y | ) - p(x)
r(y)

plx | y) =

If X is the robot’s state that we would like to infer from y (the sensor data):

o p(x) is referred to as prior probability distribution, which summarizes the knowledge (or
ignorance) we have regarding the robot state X prior to incorporating the sensor datay.

o p(x |y) is called the posterior probability distribution over X meaning the knowledge we
have regarding the robot state X after incorporating the sensor datay.

o p(y | x) is often coined /ikelihood or generative model, since it describes how state
variables X impacts on sensor measurements Y. This information can typically come from
a map that gives information on the environment based on the state of the robot

osition).
(p ) 1. Conditional Probability and Bayes Rule 10



Bayes Rule and Normalisation

Note that the denominator of the Bayes rule, p(y), the general probability to
have a given sensor readings, does not depend on x. For this reason, p(y)' is
often seen as a normalizer:

plr |y) =n-p(y | x) - p(x)
The posterior integral just needs to be equal to 1.

To sum up, the Bayes rule provides a convenient way to compute a posterior

p(x | y) using the “inverse” conditional probability p(y | x) along with the prior
probability p(x).
1. Conditional Probability and Bayes Rule 11
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State variable

In probabilistic robotics, the state x is the collection of all aspects of the robot
and its environment (both constituting a single dynamical system) that can
impact the future of the robot (defined in the state).

State variables in mobile robotics typically include:

o robot pose: location & orientation relative to a global coordinate frame
o configuration of the robot’s manipulators

o robot velocity (dynamic state)

o sensor status or parameters (e.g. inertial sensor biases)

o location and properties of surrounding objects in the environment

o location and velocities of moving objects in the environment

o etc. (the list is endless!)

In this chapter, we assume a static world and focus on estimating only the
pose of a kinematic mobile robot (without dynamic objects, nor changing
sensor parameters). 2. Robot-environment Interaction Formalism 13



Complete State and Markov Chain

A state x; is said to be complete if it fully captures all the information that could
influence its future evolution.

Completeness entails that knowledge of past states, measurements, or controls
carry no additional information that would help us predict the future more
accurately.

2. Robot-environment Interaction Formalism 14



Complete State and Markov Chain

A Markov chain is a temporal process that meets this condition of state
completeness. A Markov chain describes at successive times the (complete)

state of a system.
~y )\/ )\”

@ +l

measurement

action

Note: The notion of state completeness is mostly of theoretical importance (i.e. required to
derive the Bayes filter). In practice, it is impossible to specify a complete state for any realistic
robot system. A complete state includes not just all aspects of the environment that may have
an impact on the future, but also the robot itself, the content of its computer memory, the brain
dumps of surrounding people, etc.

2. Robot-environment Interaction Formalism 15



Types of Robot-Environment Interactions

Environment sensor measurements (=observation, percept)

o Process by which the robot uses its sensors to obtain information about the
state of its environment.

o Environment measurement data will be denoted z; where
Z11:42 = Zt1y Zt1415 L4142, -0 12

denotes the set of all measurements acquired from time t; to t,.

2. Robot-environment Interaction Formalism 16



Types of Robot-Environment Interactions

Control actions (or motion)

o Process by which the robot changes the state of the world by actively
asserting forces on the robot’s environment.

o Control data u;carry information about the change of state. Typical control
data include: velocity of robot actuators or odometer data (!)

o As before, a sequence of control data will be denoted:

Ut1-t2 = Ui, Ugr+1, U2, -0 U

2. Robot-environment Interaction Formalism 17



Types of Robot-Environment Interactions

The distinction between measurement and control is a crucial one, as both types
of data play fundamentally different roles in the material yet to come.

« Perception provides information about the environment’s state, hence it
tends to increase the robot’'s knowledge.

« Motion, on the other hand, tends to induce a loss of knowledge due to the
inherent noise in robot actuation and the stochasticity of robot environments;

(although sometimes a control makes the robot more certain about the
state.)

2. Robot-environment Interaction Formalism 18



Evolution of State and Measurement

The evolution of state and measurements is governed by probabilistic laws:

. ‘/ -/ +1
control actions: |

measurements: @ +1

The state transition probability is the probabilistic law characterizing the evolution of state:

‘

P(Te | o:t—1,21:4—1,U1:2) = DP(Te | Tp—1,Us)
The measurement probability is the process by which measurements are generated:

p(zt | Zo:t, zl:t——laul:t) - p(zt | .’L‘t)

Such a generative model is also known as dynamic Bayes network (DBN), which belongs to
the class of hidden Markov model (HMM). 2. Robot-environment Interaction Formalism 19



Belief Distribution

A belief reflects the robot’s internal knowledge about the state, which cannot be measured directly (hidden state).

A belief distribution assigns a probability to each possible hypothesis with respect to the true state (“what is the
probability to be somewhere?”).

Belief distributions are posterior probabilities over state variables conditioned on the available data:
bel(x,) = p(X; | Zy, Uyy)

If this posterior is calculated before incorporating the latest measurements, it is referred to as prediction and
denoted:

bel(x,) = p(x; | Z1.44, Uyy)

This terminology reflects the fact that bel(x,) predicts the state at time t based on the previous state posterior,
before incorporating the measurement at time t. Calculating bel(x,) from bel(x,) is called correction or measurement
update.

2. Robot-environment Interaction Formalism 20
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Bayes Filter

The most general algorithm for calculating beliefs is the Bayes filter. It is a recursive filter and the
following pseudo-code depicts a single iteration of it:

Algorithm Bayes_filter(bel(xs—1), us, 2¢):

o for ﬂxt do , —— action model
prediction bel(xz:) = [ p(zs | we, Te—1) bel(zi_1) das_1

measurement update bel(zs) = 1 p(ze | @) bel(xy)
endfor
return bel(x;) measurement model
Two steps:

1. Control update or prediction (based on the theorem of total probability).
2. Measurement update or correction (based on the Bayes rule).

This algorithm can only be implemented in the form stated here for very simple estimation problems. One either needs to
be able to carry out the integration in step 1 and the multiplication in step 2 in closed form, or one needs to restrict

himself to finite state spaces, so that the integral becomes a finite sum. _
3. Bayes Filter 22



Localisation : the Bayesian Perspective

The robot is given a map m of its environment and its goal is to determine its
position relative to this map given the perceptions of the environment and its
movements.

state ~ robot pose

control actions

measurements

In probabilistic robotics, this problem is solved using a variant of the Bayes filter.

3. Bayes Filter 23



Markov Localisation

Markov localization is just a different name for the Bayes filter applied to the
mobile robot localization problem:

Algorithm Markov_localization(bel(xi—1), us, z¢,m):

for all =y do , motion model (not always map dependent)
bel(xy) = [ p(ay | e, xe—1,m) bel(xe—1) dri_y prediction
bel(xe) = n p(ze | ¢, m) m(l’t) measurement update
endfor

measurement model (map dependent)
return bel(x;)

Markov localization can address the global localization problem (initial belief is
uniform), the position tracking problem (initial belief is typically a tight

Gaussian), and the kidnapped robot problem in static environments. 5y



1D Example

Initial belief is uniform over all poses
(global localization).

As the robot moves to the right, the 15t
step of Bayes filter convolves its belief
with the motion model p(x; | u;, x;.;), not
indicated here at the beginning.

As the robot queries its sensors and
notices that it is adjacent to one of the

doors, it multiplies its belief by p(z; | x, m)

?fcording to the 29 step of the Bayes
ilter.

As the robot moves to the right, the 1st
step of Bayes filter is applied again.

The 2" measurement allows to correct the
previous prediction. Now the robot is quite
confident of having localized itself.

Robot belief after having moved further
down the hallway (without further

measurements).

(a)

(b)

(o)

(d)

(e)




Tractability Of Bayes Filter For Localisation

Since the Bayes filter is not a practical algorithm (numerical computation is feasible only for very
specific cases), probabilistic algorithms for robot localization use approximations.

The nature of approximation has important ramifications on the complexity of the algorithm and the
type of localization (e.g. global vs tracking).

Example of widely-used approximations:

o Discretization of the belief space -> nonparametric, discrete filters
m Histogram filter -> grid localization:
e belief is discretized into an histogram (finite state spaces)
m Particle filter -> Monte Carlo Localization (MCL):
e represents the belief by a set of random state samples drawn from the belief
o Linearization and parameterization -> Gaussian filters
m Extended Kalman filter -> EKF localization:

e belief is represented using Gaussian(s)
e motion and measurement models are linearized (using the Jacobian matrix)

26



Histogram Filter (Markov Localization)

P(y) [ —— Function g(x) |

[ Histogram

P(y) X

Belief is discretized into a
n-dimensional histogram.

Simplest to understand. >§>

Becomes intractable for large
or high dimensional state spaces.

y=g(x)

p(x)
[ ] Histogram

LY

Algorithm Discrete_Bayes_filter({px +—1}. us, 2¢):
for all k do

Pr,t = E p(ﬁt — Tk | Ut, Xt—1 = 7:)101 e |

p(x)

Pkt ='f)p(zt | Xt = @i) Pt
endfor

return {pg.:} 27
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p(y) [ [ — Function g(x) |

—— Samples

Particle Filter

=l

Particle filters represent a distribution
by a set of samples.

p(y) X

The denser a subregion of the state space

is populated by samples, the more likely it is that the true state

p(x)

p(x)
—— Samples
falls into this region. [ ﬁ ﬁ

X

Such a representation is approximate, but focuses the computation

on the most probable location, “forgetting” the locations that have very low
probability.

Weights are assigned to particles through the measurement model and resampling
allows to redistribute particles approximately according to the posterior bel(x,).

The resampling step is a probabilistic implementation of the Darwinian idea of
survival of the fittest: it refocuses the particle set to regions in state space with high
posterior probability.

29



1D Particle Filter (MCL) Example

MCL = Monte Carlo
localization

weighing of the
particles depending on
the measurement
model & resampling
according to the
weights

application of the
motion model
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Particle Filter - Example Algorithm

In particle filters, the samples of a posterior distribution are called particles and
are denoted:

sy Fol Ol o

= = \O
Do -

X = :z:gl], :z:£2], p—— :z:gM]
Algorithm Particle filter(X; _ 1, us, 2¢):
X, =X =0 Sampling generation of new particles
form = 1 to M do from the old one using the probabilistic
sample 337[5m] ~ p(x¢ | ue, :I;,[ffl) motion model (spreading)
w,Em] = p(zt | me]) \ Evaluation of the weight by incorporating
Xy = X + <~”U£m]7 ’w£m]> the measurement z, into the particle set.

endfor The weight is thus the probability of the
form = 1 to M do h icl [m]
|  with orobability oc 1l measurement z, under the particle x,™ml.
LAW0 SV 1 Y t Particles that have a position that fits well

add =z to &, . . .
SHd s with the measurement get higher weight.

return A’ 31



Particle Filter - Example Algorithm

In particle filters In particle filters, the samples of a posterior distribution are
called particles and are denoted:

PR e PNE

= = \O
>l =

X = :z:gl], :z:£2], p—— :z:gM]

Algo_rithm Particle filter(X; _ 1, us, z¢):

X=X =0

0T = to[% do fo] Resampling. The algorithms draws with
Sa[ljlnﬁ)le Tz ™ 1?,,(3]3’5 | wes 5-1) replacement M particles from the
we = P2 | o )[m] temporary belief X,. The drawing

end;g; =Xz +(z T, wp ) probability is proportional to the weight.

for m — 1 to M do Whereas before the resampling step,
draw 7 with probability o 1w’ particles were an approximation of -
R bel(x,) , after they are an approximation

— of bel(x,)
endfor t

return 32



2D Localisation on Thymio

Wang, S., Colas, F., Liu, M., Mondada, F., & Magnenat, S. (2018). Localization of inexpensive robots with low-bandwidth sensors. In Distributed Autonomous Robotic Systems (pp. 545-558). Springer, Cham.
34



What should I remember

e  Motivation of using probabilistic representations
e Conditional probability law and Bayes rule
o meaning and use in a pose estimation use
e  State variables
o  whatis represented
o complete state: understanding
o  markov chain: concept
e Interactions with environment and role in the probabilistic state estimation
o measurements
o actions
o  belief distribution
e  Markov localisation
o  principle and computation
® Markov localisation
o  principle and computation

35



Kalman Filters

Kalman filters represent the

\ | — Mean of p(y)
*.| = =- EKF Gaussian

pY)
—— Gaussian of p(y)

- —- Mean of EKF

belief by means of multinormals,

i.e.mean vector and >%_\
covariance matrix.

This approach allows to fuse
information from several sensors

in an “intelligent way”, by combining their
statistical properties.

The aim of the Kalman filters is to minimize
the a posteriori (after sensor integration) error covariance.

—— Function g(x)
- — - Taylor approx.
x Mean u

o a(w)

Ll

vy=

pP(x)
x Meanp

p(x)

37



A Simple Scalar Example

Let consider a model of the position of a robot moving in 1D at constant speed.
The system model is the following:

ZEt_|_1:CCt—|—d—|—wt

Yt = Tt + Ut
Where

X; is the position at time t,

d is the displacement between two steps,

w; is the displacement noise with variance q,
y; the measured position,

vithe measurement noise of variance .

38



A Simple Scalar Example

Let compute the prediction of the mean, based on the previous mean:

pe = pg—1 +d

... and compute the prediction of the error variance:

M= 21 + q

39



A Simple Scalar Example

If we now take a measurement we can have a look to the difference between
measure and prediction, called innovation:

tt = Yt — Mt
... and compute an optimal gain for the correction (not developed here):

N it—|—’f‘

Ky

40



A Simple Scalar Example

Based on the optimal gain, we can generate an estimation a posteriori that takes
into account the measurement through the innovation and the gain:

pe = fig + Kty

... and compute the corresponding variance:

Y = (1 — Ky)

41



Towards a Generic Kalman

Let consider a model of the state of a robot having two variables, a and b,
components of the vector x :

Lt+1 — Axt -+ But -+ Wy
Y = CZEt + V¢

Where x, is the state of the system at sample k,

A is the matrix defining how the system evolves,

u is the known input to the system, impacting x through B,

w, is the state stochastic perturbation with covariance matrix Q,
Y the measurement, related to the state by matrix C,

v, the measurement noise with covariance matrix R.

42



Towards a Generic Kalman

As an example we could consider a simple system with no external input:

Ti+1 = Axy + wy

Yy = Cxy + vy

43



Towards a Generic Kalman

Let compute the expectation of the predicted state, based on the previous mean:

e = Apg—1 + Bug—q

... and compute the covariance matrix of the predicted state:

= A% 1 AT +Q

4. Markov Localisation Techniques 44



Towards a Generic Kalman

If we now take a measurement we can have a look to the difference between
measure and prediction, called innovation (and its variance):

it = Yr — Cliy S, = O0%.CT + R

... and compute an optimal gain for the correction (not developed here):
K N T o—1

45



Towards a Generic Kalman

Based on the optimal gain, we can generate an estimation a posteriori that takes
into account the measurement through the innovation and the gain:

pe = [y + Ky
.. and compute the corresponding the covariance matrix:

> = (I — KOSy

46



Extended Kalman Filter (EKF)

The Extended Kalman Filter is a Kalman filter applied to a non-linear

system linearized at each discrete time k

Algorithm Extended_ Kalman_filter{(ze. 1,31, ue, 2¢):

Pe = g(ue, pre—1) prediction: computation of mean and covariance using
3t =Gt Te 1 Gf + R linearization of the motion model g

Ky =%, HI'(H, S, H + Q)1

pe = fi -+ Ko(ze — R(f2e)) measurement update: computation of final mean and

= — Ky H) 2 covariance using Kalman gain K;
return pg, 3

=g(u, X;.,) + € where €, ~ N(0, R) is a multinormal that models
the uncertainty introduced by the state transition.

G is the Jacobian of the motion model g.
47



Extended Kalman Filter (EKF)

The Extended Kalman Filter is a Kalman filter applied to a non-linear

system linearized at each discrete time k
Algorithm Extended_Kalman_filter{(ze. 1,31, ue, 2¢):

He = g, pe—1) prediction: computation of mean and covariance using

Xt =G:Ii1 Gf + R Imearlzatlon of the motion model g

Ky, =% HI (H; Z, HF + Q)1

pe = fe + Ke(ze — h(jae))
= {7 — K; H;) 2

return piy, 234

measurement update: computation of final mean and
covariance using Kalman gain K,

h is the measurement model: z, = h(x,) + 6, where &, ~ N(0, Q) is a multinormal describing
the measurement noise.
H is the Jacobian of the measurement model h.

K is the Kalman gain. It specifies the degree to which the measurement is incorporated

into the new state estimate. It is computed so to minimize the a posteriori error
covariance. 48



1D EKF Example

Initial belief.

Initial belief is convolved with the
motion model (prediction step).

Here we assume that the robot can identify

A
p(zlx)

the feature it sees as door #2 (known
p(zt | Xti m' x
correspondence). -
Resulting belief is tighter than the variances of |4 beix) door=#2)
both the robot’s previous belief and the A X

observation density




Concrete example sensor fusion (from Adrien Briod)

Accelerometers
« Measure linear accelerations (including g!)

0Q4

=

=

==

’6“ Applied acceleration (3=0)

a=0

= 9
vvvvvvvvvvvvvv Movable Mass Movable Mass

‘ g TR
....... X o . 9.9.3.9.9.3 ,

— H |

=<3 G G G (&

‘. S— Q‘ -

:: : :: / drtx >, -x

. = . \ / Movable finger
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S. Kavitha, R. Joseph Daniel, K. Sumangala, “High performance

G raVity & I i nea r MEMS accelerometers for concrete SHM applications and

comparison with COTS accelerometers”,
1 Mechanical Systems and Signal Processing, Volumes 66—67,
acce I e ratl O n S 2016, Pages 410-424, ISSN 0888-3270,

https://doi.org/10.1016/j.ymssp.2015.06.005.

Free fall

50



Concrete example sensor fusion (from Adrien Briod)

Orientation from accelerometers

» At constant speed, the accelerometers only measure gravity g
- Measurement f = -g

0... = atan2(fx, fy)

 What if additional accelerations a ?
- Measurementf=-g + a
- 0O, is perturbed by a

W

51



Concrete example sensor fusion (from Adrien Briod)

Rate gyroscopes

» Measure rotation speed (or angular velocity)
» Pure self-motion. No absolute information.

w
&
R /J\
0

52



Concrete example sensor fusion (from Adrien Briod)

Orientation from gyroscopes

 Integration of angular speed (w)

0 =[wadt
- © can be computed incrementally as follows :

@k = @k_1 + w At

* Inreality, w is noisy :

W= wtrue+ r
r: gyroscope noise

-> The angle error is increasing over time

(e.g: if constant error r=1°/s - angle error is 60° after 1 minute)
53



Concrete example sensor fusion (from Adrien Briod)

The problem
» Accelerometers or rate gyroscopes alone don’t provide an
accurate orientation
-> How to fuse both sensors to obtain a good estimation ?

- Roll
@ ? ) pich

» Answer: Sensor Fusion algorithm

» Bayes, Histogram (Grid), Particle (Monte-Carlo),
Kalman,... which one ?

- An Extended Kalman filter o
* Unimodal probability distribution (Gaussian)
- Advantage: Computationally efficient u

- Drawback: Needs correct initialization, can make only one
hypothesis, can diverge 54
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from accelerometer

Initial
Estimate
OF

40

50 60

70

Concrete example sensor fusion (from Adrien Briod)

1D orientation estimation from gyro
Prediction step
02 02
: ©o/\  Prediction
015 Motion 1 015 (L o
model [EE SCY
: 2\ Uu=wAt 4[:>01 oA
005 -> 005 / \
I' A
0 . 0 </ A
0 10 20 30 40 40 50 60 70
Angle

Angle °

Angle ° C ]

Measurement step

02
Measurement
015
Z= Oacc
01 I,'\
7 2
/ / \\ q
0.05 4 \
/ \
/ \\
0 pid LTS
40 50 60 70
Angle °

0.05
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What should I remember

e Kalman filter
o  basic principle, advantages and disadvantages in respect to other methods
o  computation for simple and more complex approaches
o adjustment of parameters
m variances (co-variance matrix) for sensors and actuators
Applications

O
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