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Motivation

How can we represent a world 
● which is perceived with errors, 
● on which we do actions that do not correspond exactly 

to our orders, 
● with maps that are uncertain?

Let use probabilistic (random) variables

61. Conditional Probability and Bayes Rule



Conditional Probability

Random variables often carry information about other random variables. 
Suppose we already know that Y value is y, and we would like to know the 
probability that X value is x conditioned on that fact:

Where p(x,y) is the probability of having x and y.

71. Conditional Probability and Bayes Rule



Conditional Probability

81. Conditional Probability and Bayes Rule
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Bayes Rule

The Bayes rule relates a conditional of the type p(x | y) to its “inverse” p(y | x):

Bayes rule plays a predominant role in probabilistic robotics (and probabilistic 
inference in general).

91. Conditional Probability and Bayes Rule



If x is the robot’s state that we would like to infer from y (the sensor data):

○ p(x) is referred to as prior probability distribution, which summarizes the knowledge (or 
ignorance) we have regarding the robot state X prior to incorporating the sensor data y.

○ p(x | y) is called the posterior probability distribution over X meaning the knowledge we
have regarding the robot state X after incorporating the sensor data y.

○ p(y | x) is often coined likelihood or generative model, since it describes how state 
variables X impacts on sensor measurements Y. This information can typically come from
a map that gives information on the environment based on the state of the robot 
(position).
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Bayes Rule

1. Conditional Probability and Bayes Rule



Note that the denominator of the Bayes rule, p(y), the general probability to 
have a given sensor readings, does not depend on x. For this reason, p(y)-1 is 
often seen as a normalizer:

The posterior integral just needs to be equal to 1.

To sum up, the Bayes rule provides a convenient way to compute a posterior 
p(x | y) using the “inverse” conditional probability p(y | x) along with the prior 
probability p(x).
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Bayes Rule and Normalisation
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In probabilistic robotics, the state x is the collection of all aspects of the robot 
and its environment (both constituting a single dynamical system) that can 
impact the future of the robot (defined in the state).

State variables in mobile robotics typically include:
○ robot pose: location & orientation relative to a global coordinate frame
○ configuration of the robot’s manipulators
○ robot velocity (dynamic state)
○ sensor status or parameters (e.g. inertial sensor biases)
○ location and properties of surrounding objects in the environment
○ location and velocities of moving objects in the environment
○ etc. (the list is endless!)

In this chapter, we assume a static world and focus on estimating only the 
pose of a kinematic mobile robot (without dynamic objects, nor changing 
sensor parameters). 13

State variable

2. Robot-environment Interaction Formalism



A state xt is said to be complete if it fully captures all the information that could 
influence its future evolution.

Completeness entails that knowledge of past states, measurements, or controls 
carry no additional information that would help us predict the future more 
accurately.
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Complete State and Markov Chain

2. Robot-environment Interaction Formalism



Complete State and Markov Chain
A Markov chain is a temporal process that meets this condition of state 
completeness. A Markov chain describes at successive times the (complete) 
state of a system. 

Note: The notion of state completeness is mostly of theoretical importance (i.e. required to 
derive the Bayes filter). In practice, it is impossible to specify a complete state for any realistic 
robot system. A complete state includes not just all aspects of the environment that may have 
an impact on the future, but also the robot itself, the content of its computer memory, the brain 
dumps of surrounding people, etc.

152. Robot-environment Interaction Formalism
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Types of Robot-Environment Interactions

Environment sensor measurements (=observation, percept)

○Process by which the robot uses its sensors to obtain information about the 
state of its environment.
○Environment measurement data will be denoted zt where

zt1:t2 = zt1, zt1+1 , zt1+2 , …, zt2 

denotes the set of all measurements acquired from time t1 to t2.

162. Robot-environment Interaction Formalism



Types of Robot-Environment Interactions

Control actions (or motion)

○Process by which the robot changes the state of the world by actively
asserting forces on the robot’s environment.
○Control data ut carry information about the change of state. Typical control 

data include: velocity of robot actuators or odometer data (!)
○As before, a sequence of control data will be denoted:

ut1:t2 = ut1, ut1+1 , ut1+2 , …, ut2

172. Robot-environment Interaction Formalism



Types of Robot-Environment Interactions

The distinction between measurement and control is a crucial one, as both types 
of data play fundamentally different roles in the material yet to come. 

• Perception provides information about the environment’s state, hence it 
tends to increase the robot’s knowledge. 

• Motion, on the other hand, tends to induce a loss of knowledge due to the 
inherent noise in robot actuation and the stochasticity of robot environments; 
(although sometimes a control makes the robot more certain about the 
state.)

182. Robot-environment Interaction Formalism



Evolution of State and Measurement
The evolution of state and measurements is governed by probabilistic laws:

The state transition probability is the probabilistic law characterizing the evolution of state:

The measurement probability is the process by which measurements are generated:

Such a generative model is also known as dynamic Bayes network (DBN), which belongs to 
the class of hidden Markov model (HMM). 19

control actions:

measurements:

state:

2. Robot-environment Interaction Formalism



Belief Distribution

A belief reflects the robot’s internal knowledge about the state, which cannot be measured directly (hidden state).

A belief distribution assigns a probability to each possible hypothesis with respect to the true state (“what is the 
probability to be somewhere?”).

Belief distributions are posterior probabilities over state variables conditioned on the available data:

bel(xt) = p(xt | z1:t, u1:t)

If this posterior is calculated before incorporating the latest measurements, it is referred to as prediction and 
denoted:

bel(xt) = p(xt | z1:t-1, u1:t)

This terminology reflects the fact that bel(xt) predicts the state at time t based on the previous state posterior, 
before incorporating the measurement at time t. Calculating bel(xt) from bel(xt) is called correction or measurement
update.

202. Robot-environment Interaction Formalism
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Bayes Filter
The most general algorithm for calculating beliefs is the Bayes filter. It is a recursive filter and the 

following pseudo-code depicts a single iteration of it:

Two steps:

1. Control update or prediction (based on the theorem of total probability).
2. Measurement update or correction (based on the Bayes rule).

This algorithm can only be implemented in the form stated here for very simple estimation problems. One either needs to 
be able to carry out the integration in step 1 and the multiplication in step 2 in closed form, or one needs to restrict 
himself to finite state spaces, so that the integral becomes a finite sum.
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action model

measurement model

prediction
measurement update

3. Bayes Filter



Localisation : the Bayesian Perspective

The robot is given a map m of its environment and its goal is to determine its
position relative to this map given the perceptions of the environment and its
movements.

In probabilistic robotics, this problem is solved using a variant of the Bayes filter.
23

state ~ robot pose

control actions

measurements

map

3. Bayes Filter
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Markov Localisation
Markov localization is just a different name for the Bayes filter applied to the 
mobile robot localization problem:

Markov localization can address the global localization problem (initial belief is 
uniform), the position tracking problem (initial belief is typically a tight 
Gaussian), and the kidnapped robot problem in static environments.

24

motion model (not always map dependent)

measurement model (map dependent)

prediction
measurement update



1D Example

a) Initial belief is uniform over all poses 
(global localization).

As the robot moves to the right, the 1st

step of Bayes filter convolves its belief 
with the motion model p(xt | ut, xt-1), not 
indicated here at the beginning.

b) As the robot queries its sensors and 
notices that it is adjacent to one of the 
doors, it multiplies its belief by p(zt | xt, m) 
according to the 2nd step of the Bayes 
filter.

c) As the robot moves to the right, the 1st

step of Bayes filter is applied again.

d) The 2nd measurement allows to correct the 
previous prediction. Now the robot is quite 
confident of having localized itself.

e) Robot belief after having moved further 
down the hallway (without further 
measurements).
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Tractability Of Bayes Filter For Localisation
Since the Bayes filter is not a practical algorithm (numerical computation is feasible only for very 
specific cases), probabilistic algorithms for robot localization use approximations.

The nature of approximation has important ramifications on the complexity of the algorithm and the 
type of localization (e.g. global vs tracking).

Example of widely-used approximations:

○ Discretization of the belief space -> nonparametric, discrete filters
■ Histogram filter -> grid localization:

● belief is discretized into an histogram (finite state spaces)
■ Particle filter -> Monte Carlo Localization (MCL):

● represents the belief by a set of random state samples drawn from the belief
○ Linearization and parameterization -> Gaussian filters

■ Extended Kalman filter -> EKF localization:
● belief is represented using Gaussian(s)
● motion and measurement models are linearized (using the Jacobian matrix)

26



Histogram Filter (Markov Localization)

Belief is discretized into a 
n-dimensional histogram.

Simplest to understand.

Becomes intractable for large 
or high dimensional state spaces.

27
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1D Grid Example

28
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Particle Filter

Particle filters represent a distribution 
by a set of samples. 

The denser a subregion of the state space 
is populated by samples, the more likely it is that the true state 
falls into this region.

Such a representation is approximate, but focuses the computation
on the most probable location, “forgetting” the locations that have very low 
probability.

Weights are assigned to particles through the measurement model and resampling 
allows to redistribute particles approximately according to the posterior bel(xt).

The resampling step is a probabilistic implementation of the Darwinian idea of 
survival of the fittest: it refocuses the particle set to regions in state space with high 
posterior probability. 29

exercice



1D Particle Filter (MCL) Example

MCL = Monte Carlo 
localization

a) weighing of the 
particles depending on 
the measurement 
model & resampling 
according to the 
weights

b) application of the 
motion model 30

a)

b)



Particle Filter - Example Algorithm

In particle filters, the samples of a posterior distribution are called particles and 
are denoted: 

31

Sampling generation of new particles
from the old one using the probabilistic
motion model (spreading)
Evaluation of the weight by incorporating
the measurement zt into the particle set.
The weight is thus the probability of the
measurement zt under the particle xt

[m].
Particles that have a position that fits well
with the measurement get higher weight.



Particle Filter - Example Algorithm

In particle filters In particle filters, the samples of a posterior distribution are 
called particles and are denoted: 
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Resampling. The algorithms draws with 
replacement M particles from the 
temporary belief Χt. The drawing 
probability is proportional to the weight. 
Whereas before the resampling step, 
particles were an approximation of 
bel(xt) , after they are an approximation 
of bel(xt) 
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2D Localisation on Thymio

Wang, S., Colas, F., Liu, M., Mondada, F., & Magnenat, S. (2018). Localization of inexpensive robots with low-bandwidth sensors. In Distributed Autonomous Robotic Systems (pp. 545-558). Springer, Cham.



What should I remember 
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Simmons (1996)

● Motivation of using probabilistic representations
● Conditional probability law and Bayes rule

○ meaning and use in a pose estimation use
● State variables

○ what is represented
○ complete state: understanding
○ markov chain: concept

● Interactions with environment and role in the probabilistic state estimation
○ measurements
○ actions
○ belief distribution

● Markov localisation
○ principle and computation

● Markov localisation
○ principle and computation



Kalman filters represent the 
belief by means of multinormals, 
i.e.mean vector and 
covariance matrix.

This approach allows to fuse 
information from several sensors 
in an “intelligent way”, by combining their 
statistical properties.

The aim of the Kalman filters is to minimize 
the a posteriori (after sensor integration) error covariance.

37

Kalman Filters



Let consider a model of the position of a robot moving in 1D at constant speed. 
The system model is the following:

Where 

xt is the position at time t, 
d is the displacement between two steps, 
wt is the displacement noise with variance q, 
yt the measured position, 
vt the measurement noise of variance r.

38
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Let compute the prediction of the mean, based on the previous mean:

… and compute the prediction of the error variance:
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A Simple Scalar Example



If we now take a measurement we can have a look to the difference between 
measure and prediction, called innovation:

… and compute an optimal gain for the correction (not developed here):
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A Simple Scalar Example



A Simple Scalar Example

Based on the optimal gain, we can generate an estimation a posteriori that takes 
into account the measurement through the innovation and the gain:

… and compute the corresponding variance:
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Towards a Generic Kalman

Let consider a model of the state of a robot having two variables, a and b, 
components of the vector x : 

Where xk is the state of the system at sample k, 
A is the matrix defining how the system evolves,
u is the known input to the system, impacting x through B,
wk is the state stochastic perturbation with covariance matrix Q, 
yk the measurement, related to the state by matrix C, 
vk the measurement noise with covariance matrix R.
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Towards a Generic Kalman

As an example we could consider a simple system with no external input:

Where:
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Towards a Generic Kalman

Let compute the expectation of the predicted state, based on the previous mean:

… and compute the covariance matrix of the predicted state:

444. Markov Localisation Techniques



Towards a Generic Kalman

If we now take a measurement we can have a look to the difference between 
measure and prediction, called innovation (and its variance):

… and compute an optimal gain for the correction (not developed here):
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Towards a Generic Kalman

Based on the optimal gain, we can generate an estimation a posteriori that takes 
into account the measurement through the innovation and the gain:

… and compute the corresponding the covariance matrix:
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Extended Kalman Filter (EKF)
The Extended Kalman Filter is a Kalman filter applied to a non-linear

system linearized at each discrete time k

g is the motion model : xt = g(ut, xt-1) + εt where εt ~ N(0, R) is a multinormal that models 
the uncertainty introduced by the state transition.

G is the Jacobian of the motion model g.
47

measurement update: computation of final mean and 
covariance using Kalman gain Kt

prediction: computation of mean and covariance using
linearization of the motion model g



Extended Kalman Filter (EKF)
The Extended Kalman Filter is a Kalman filter applied to a non-linear

system linearized at each discrete time k

h is the measurement model: zt = h(xt) + δt where δt ~ N(0, Q) is a multinormal describing 
the measurement noise. 

H is the Jacobian of the measurement model h.

K is the Kalman gain. It specifies the degree to which the measurement is incorporated 
into the new state estimate. It is computed so to minimize the a posteriori error 
covariance. 48

measurement update: computation of final mean and 
covariance using Kalman gain Kt

prediction: computation of mean and covariance using
linearization of the motion model g
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1D EKF Example

Here we assume that the robot can identify 
the feature it sees as door #2 (known 

correspondence).

Initial belief is convolved with the 
motion model (prediction step).

Resulting belief is tighter than the variances of 
both the robot’s previous belief and the 

observation density

Initial belief.

p(zt | xt, m, 
door=#2)
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Concrete example sensor fusion (from Adrien Briod)

S. Kavitha, R. Joseph Daniel, K. Sumangala, “High performance 
MEMS accelerometers for concrete SHM applications and 
comparison with COTS accelerometers”,
Mechanical Systems and Signal Processing, Volumes 66–67, 
2016, Pages 410-424, ISSN 0888-3270, 
https://doi.org/10.1016/j.ymssp.2015.06.005.
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Concrete example sensor fusion (from Adrien Briod)
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Concrete example sensor fusion (from Adrien Briod)
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Concrete example sensor fusion (from Adrien Briod)
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Concrete example sensor fusion (from Adrien Briod)
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Concrete example sensor fusion (from Adrien Briod)

from gyro

from accelerometer



What should I remember 
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Simmons (1996)

● Kalman filter
○ basic principle, advantages and disadvantages in respect to other methods
○ computation for simple and more complex approaches
○ adjustment of parameters

■ variances (co-variance matrix) for sensors and actuators
○ Applications


